首页> 外文OA文献 >Atom-by-Atom Substitution of Mn in GaAs and Visualization of their Hole-Mediated Interactions
【2h】

Atom-by-Atom Substitution of Mn in GaAs and Visualization of their Hole-Mediated Interactions

机译:Gaas中原子的原子取代及其可视化   孔介导的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The discovery of ferromagnetism in Mn doped GaAs [1] has ignited interest inthe development of semiconductor technologies based on electron spin and hasled to several proof-of-concept spintronic devices [2-4]. A major hurdle forrealistic applications of (Ga,Mn)As, or other dilute magnetic semiconductors,remains their below room-temperature ferromagnetic transition temperature.Enhancing ferromagnetism in semiconductors requires understanding themechanisms for interaction between magnetic dopants, such as Mn, andidentifying the circumstances in which ferromagnetic interactions are maximized[5]. Here we report the use of a novel atom-by-atom substitution technique withthe scanning tunnelling microscope (STM) to perform the first controlled atomicscale study of the interactions between isolated Mn acceptors mediated by theelectronic states of GaAs. High-resolution STM measurements are used tovisualize the GaAs electronic states that participate in the Mn-Mn interactionand to quantify the interaction strengths as a function of relative positionand orientation. Our experimental findings, which can be explained usingtight-binding model calculations, reveal a strong dependence of ferromagneticinteraction on crystallographic orientation. This anisotropic interaction canpotentially be exploited by growing oriented Ga1-xMnxAs structures to enhancethe ferromagnetic transition temperature beyond that achieved in randomly dopedsamples. Our experimental methods also provide a realistic approach to createprecise arrangements of single spins as coupled quantum bits for memory orinformation processing purposes.
机译:锰掺杂的砷化镓中铁磁性的发现[1]引发了对基于电子自旋的半导体技术发展的兴趣,并加速了几种概念验证的自旋电子器件[2-4]。实际应用中(Ga,Mn)As或其他稀磁性半导体的主要障碍仍然是其低于室温的铁磁转变温度。增强半导体中的铁磁要求了解诸如Mn之类的磁性掺杂剂之间相互作用的机理,并确定其中的情况。哪些铁磁相互作用被最大化[5]。在这里,我们报告了使用新颖的原子逐原子取代技术与扫描隧道显微镜(STM)进行由GaAs电子态介导的分离的Mn受体之间相互作用的第一个受控原子规模研究。高分辨率STM测量用于可视化参与Mn-Mn相互作用的GaAs电子状态,并根据相对位置和方向量化相互作用强度。我们的实验发现可以用紧密结合模型计算来解释,显示出铁磁相互作用对晶体取向的强烈依赖性。通过生长定向的Ga1-xMnxAs结构可以潜在地利用这种各向异性相互作用,以将铁磁转变温度提高到超过随机掺杂样品中达到的温度。我们的实验方法还提供了一种现实的方法来创建单个自旋的精确排列,以作为耦合量子位用于存储或信息处理目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号